The critical exponent: a novel graph invariant

نویسندگان

  • Dominique Guillot
  • Apoorva Khare
  • Bala Rajaratnam
چکیده

A surprising result of FitzGerald and Horn (1977) shows that A◦α := (aα ij) is positive semidefinite (p.s.d.) for every entrywise nonnegative n× n p.s.d. matrix A = (aij) if and only if α is a positive integer or α ≥ n− 2. Given a graph G, we consider the refined problem of characterizing the setHG of entrywise powers preserving positivity for matrices with a zero pattern encoded by G. Using algebraic and combinatorial methods, we study how the geometry of G influences the set HG. Our treatment provides new and exciting connections between combinatorics and analysis, and leads us to introduce and compute a new graph invariant called the critical exponent. Résumé. Un résultat surprenant de FitzGerald et Horn (1977) démontre que A◦α := (aα ij) est semi-définie positive pour chaque matrice semi-définie positive de dimension n avec des entrées non-négatives si et seulement si α est un entier positif ou α ≥ n− 2. Pour un graph G donné, nous considérons une généralization naturelle du problème en étudiant l’ensemble HG de puissances préservant la positivité des matrices ayant une structure de zéros encodée par G. À l’aide de méthodes algébriques et combinatoires, nous analysons de quelle façon la géometrie du graph G détermine l’ensemble HG. Notre travail fournit de nouvelles connexions excitantes entre la combinatoire et l’analyse, et nous mène à définir et calculer un nouvel invariant que l’on nomme l’exposant critique d’un graph.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the bounds of Laplacian-energy-like-invariant

The Laplacian-energy-like of a simple connected graph G is defined as LEL:=LEL(G)=∑_(i=1)^n√(μ_i ), Where μ_1 (G)≥μ_2 (G)≥⋯≥μ_n (G)=0 are the Laplacian eigenvalues of the graph G. Some upper and lower bounds for LEL are presented in this note. Moreover, throughout this work, some results related to lower bound of spectral radius of graph are obtained using the term of ΔG as the num...

متن کامل

On the Zagreb and Eccentricity Coindices of Graph Products

The second Zagreb coindex is a well-known graph invariant defined as the total degree product of all non-adjacent vertex pairs in a graph. The second Zagreb eccentricity coindex is defined analogously to the second Zagreb coindex by replacing the vertex degrees with the vertex eccentricities. In this paper, we present exact expressions or sharp lower bounds for the second Zagreb eccentricity co...

متن کامل

On Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs

Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...

متن کامل

Generating Discrete Trace Transition System of a Polyhe-dral Invariant Hybrid Automaton

Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed for generating discrete mode trans...

متن کامل

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017